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BY 
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ABSTRACT 

This paper gives a full proof of a generalization to theorem 1 in Semiprime 
Goldie centralizers [2]. The original proof was based on prop. 2 in [8], but this 
proposition turns out to be incomplete. We prove the following theorem: Let G 
be a finite group of automorphisms acting on a I G l-torsion free ring R. Then 
R e is Goldie if and only if R is Goldie, and then Q ( R )  ~ =  Q(R ~) and 
dim R_->dim R ~  

The proof of theorem 1 in Semiprime Goldie centralizers [2] was not complete, 

since it is not generally true that any nonzero divisor of R is a left nonzero 

divisor of O (as claimed in [8], p. 110). We will show, however, that T - - the  

nonzero divisors of R ~ - s t a y  nonzero divisors of O and thus that the proof was 

correct. 

We will actually prove a generalization of theorem 1 in [2] to finite groups of 

automorphisms and also give a converse to it. The main result is: 

THEOREM 1. Let G be a finite group of automorphisms acting on a semiprime 
[ G [-torsion free ring R. Then R ~ is Goldie if and only if R is Goldie, and then 
O(R ) ~ = O(R ~) and dim R => dim R e, where G is an extension of G to O(R ), 
the full quotient ring of R, and dim R denotes the length of a maximal direct sum 
of right ideals of R. 

The question of whether R G is necessarily Goldie if R is semiprime Goldie, 

which is proved in the theorem, was proved already in 1972 by Carl Faith [4] in 

the special case when R is an Ore domain. The search for an answer to this 

question motivated Bergman and Isaacs [1] to prove Proposition 2.3, which is 

much used in our paper. 

Notations and definitions are as in [2]. 

We also mention the important variant to a result of Bergman and Isaacs [1] 

which gives a connection between RC and R. 
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LEMMA 1. Let G be a finite group of automorphisms acting on a I G ]-torsion 

free ring R. Let S ~ 0 be a subring of R invariant under G. Then S n R ~ ~ 0 or S is 

nilpotent. 

PROOF. This follows from [1, prop. 2.3]. 

In the following, G will denote a finite group of automorphisms acting on a 

t G I-torsion free ring R. 

Proposition 1 in [2] is valid for R and G as above, the proof being identical to 

the proof in [2] where, instead of J = n 4~k(I), we take J = n s E c g ( i  ). 

Instead of proposition 2 in [2] we use the following generalization, which was 

proved in  [3] but can also be shown to be a consequence of Proposition 1: 

PROPOSITION 2. If R is semiprime and R ~ is semisimple Artinian, then R is 

semisimple Artinian. 

The next proposition gives the converse of the main theorem. 

PROPOSITION 3. If R is semiprime and R is finite dimensional, then R ~ is finite 

dimensional and dim R _-> dim R a. 

PROOF. Semiprimeness of R implies semiprimeness of R ~, by [9]; hence it is 

enough to show that if x~R GO.  �9 �9 ~ x m R  ~ is direct in R o then x~R + �9 �9 �9 + x,~R 

is direct in R, x~ E R ~. If 0 / x j R  n (E,,j x~R), then, being invariant under G, we 

get by Lemma 1 and semiprimeness of R that 0 ~ xjR O (E~,,jx~R)n R ~, but if 

O ~ xiri = "~i,,~xM E R e, then 

a contradiction. Thus ~,xiR is direct. 

In the following proposition we deal with a ring R with singular ideal 0 and 

maximal quotient ring Q (in [2], Q is called a regular right quotient ring of R). 

We mention that for any q E Q ,  q - I R = { r E R I q r E R }  is essential and 

q: q- IR ~ R is a right R-module homomorphism. 

We show next that if G is a group of automorphisms acting.on R, then G can 

be extended to a group of automorphisms (~ acting on Q such that the 

restriction of t~ to R is G. Categorically, we show that Aut R is a section of 

Aut  Q. 

PROPOSITION 4. Let R be a ring with singular ideal 0 and maximal quotient 

ring Q. Then the following hold: 
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1) I f  H~, 1-t2 E Aut Q and if Hi(r)  = Hffr)  for all r in R, then HI = 1-t2. 

2) Define ix on Aut R via : ix (h ) (q ) = hqh ~ for h E Aut R and q E Q. Denote 

by (Aut Q )R the group of automorphisms on 0 which leave R invariant. Then, the 

restriction of Ix (h ) to R is h, so, IX : Aut R --~ (Aut Q )R. In addition I~ is a bijective 

group homomorphism. Hence Aut R = (Aut Q) , .  

3) I f  G is a subgroup of Aut R, then ~J = IX(G) is a subgroup of (Aut Q)R, and 

the restriction of G to R is G. Hence, in particular, R ~ = R o. 

PROOF. To prove 1), it is enough to show that if H(r )  = r for all r ~ R, then 

H ( q ) =  q for all q E Q. Let q E Q. Then ( H ( q ) - q ) ( q - ' R ) = O ,  since H ( r ) =  r 

for all r E R. Thus it follows easily that H ( q ) - q  = O. 

Next let us prove 2). First we show that # ( h ) ( q )  E Q, that is, we show that the 

domain of the function i x (h ) (q )  is an essential right ideal and that i x (h ) (q)  is a 

right R-module  homomorphism. The domain of i x ( h ) ( q ) =  hqh -~ is h ( q - l R ) ,  

which is essential since q ~R is essential and h is an automorphism. To show that 

hqh ~ is a right R-module  homomorphism, let x = h ( y ) E  h(q-~R)  and r E R. 

Then 

hqh- ' (xr)  = hq [h '(h (y))h- ' ( r ) ]  = hq [yh -l(r)]. 

Since y E q- tR  and q is a right R-module  homomorphism, we have 

hqh '(xr) = h (q (y)h -l(r)) = (hqh -~) (x )r. 

We have seen so far that ix (h): Q ~ Q. The proof that ix (h) E Aut Q and that 

ix is a group homomorphism is straightforward. Next we show that i x ( h ) ( r ) =  

h(r),  thus i x ( h ) E ( A u t Q ) R .  Let r E R .  Then R C Q  via r--*L, (i.e., left 

multiplication by r); hence i x ( h ) ( r ) = i x ( h ) ( L , ) =  hL,h-' .  But (hL,h-~)(x)  = 

h(rh-~(x)) = Lhr for each x E R. Hence hL,h -~ = Lht,), and we have shown 

that ix(h ) ( r ) =  h(r).  

To see that /x is injective, assume ix (h) = ido ; then ix (h) (r) = r for all r E R. 

But by the above i x ( h ) ( r ) =  h(r), so h ( r ) =  r for all r E R, that is, h = ida. 

Finally,/x is onto (Aut O)R, since if H E (Aut Q ) ,  and if h is the restriction of H 

to R, then ix (h)  (r) = H(r )  for all r E R ; hence by 1), ix (h)  = H. 

The proof of 3) follows from 2). 

We are ready to prove the main theorem, part of which was shown 

independently by V. K. Harchenko [5]. 

THEOREM 1. Let G be a finite group of automorphisms acting on a semiprime 

I G I-torsion free ring R. Then R ~ is Goldie if and only if R is Goldie, and then 
Q(R)C = Q ( R  ~) and dim R - > d i m  R~. 
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PROOF. If R is semiprime Goldie, then by Proposition 3 R e is finite 

dimensional and dim R => dim R e. Since R e is a subring of R, it inherits the 

maximum condition on right annihilators; hence R e is Goldie. 

Now assume R ~ is Goldie. Since R is a semiprime I G I-torsion free ring, we 

have by [8, cor. 5] that R e is semiprime; thus R e is semiprime Goldie. 

If we now repeat the proof of theorem 1 in [2], and denote by T the set of 

nonzero divisors of R a, then all that remains to be shown in order  to prove that 

T is a right denominator  set for R is that, for any t E T, t is a left nonzero divisor 

in O. To do this, let us extend G to O as suggested in Proposition 4. Since 

101 = IGI,  and since for each q E Q, qR n R #  O, it follows that O is 101- 

torsion free, and, since R is semiprime, that Q is semiprime. 

Now let t E T, and assume that l ( t )={q ~ Q lqt = 0 } # 0 .  Since l(t) is 

invariant under 0 ,  an application of Lemma 1 to 0 and Q gives l(t) n Q ~  O. 

We shall prove next that for any q ~ Q~ we have q R ~ n  R ~  O. Since 

qR n R # 0 is invariant under 0 ,  Lemma 1 yields (qR O R)  O Q ~ # O. But since 

qR O R C R and R ~ = R ~, we actually have (qR n R)  n R e # O. Hence there 

are x and y in R such t h a t 0 # q x = y ~ R O ,  so 

0 # l G l y  = ~', h ( y ) =  ~ l ~ ( y ) = ~ i ~ ( q x ) = q ~ l ~ ( x ) = q ~ h ( x ) E q R  e A R  e 
h ~ e  I~E~ 

In conclusion, there exists an element q such that qt = 0. On the other  hand, 

there are x, y E R e such that 0 # qx = y E R a. Since R o is semiprime Goldie 

and t is a nonzero divisor of R e, there exist tl, xl E R e, tl ~ T such that txl = xh. 

But then 0 = qtx~ = qxt~ = ytl # 0, since y E R e and t~ is a nonzero divisor of 

R e. We have reached a contradiction, and thus l ( t)= O. 

As in [2], we have shown that Q = Rr. Since (Rr) ~ = (Re) r ,  and since ( R e ) r  

is semisimple Artinian, Proposition 2 implies that Rr  is Artinian. Since R is now 

an order  in Rr, R is Goldie. Since Rr  = Q (R), the full ring of quotients of R, we 

derive from the above that (O(R))  ~ = Q (R~  
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