ADDENDUM TO "SEMIPRIME GOLDIE CENTRALIZERS"

BY

MIRIAM COHEN

ABSTRACT

This paper gives a full proof of a generalization to theorem 1 in *Semiprime Goldie centralizers* [2]. The original proof was based on prop. 2 in [8], but this proposition turns out to be incomplete. We prove the following theorem: Let G be a finite group of automorphisms acting on a $|G|$ -torsion free ring R. Then R^G is Goldie if and only if R is Goldie, and then $Q(R)^G = Q(R^G)$ and dim $R \geq$ dim R^G .

The proof of theorem 1 in *Semiprime Goldie centralizers* [2] was not complete, since it is not generally true that any nonzero divisor of R is a left nonzero divisor of Q (as claimed in [8], p. 110). We will show, however, that T—the nonzero divisors of R^G —stay nonzero divisors of Q and thus that the proof was correct.

We will actually prove a generalization of theorem 1 in [2] to finite groups of automorphisms and also give a converse to it. The main result is:

THEOREM 1. *Let G be a finite group of automorphisms acting on a semiprime* $|G|$ -torsion free ring R. Then R^G is Goldie if and only if R is Goldie, and then $O(R)^{G} = O(R^{G})$ and dim $R \geq$ dim R^{G} , where \hat{G} is an extension of G to $O(R)$, *the full quotient ring of R, and* dim *R denotes the length of a maximal direct sum of right ideals of R.*

The question of whether R^G is necessarily Goldie if R is semiprime Goldie, which is proved in the theorem, was proved already in 1972 by Carl Faith [4] in the special case when R is an Ore domain. The search for an answer to this question motivated Bergman and Isaacs [1] to prove Proposition 2.3, which is much used in our paper.

Notations and definitions are as in [2].

We also mention the important variant to a result of Bergman and Isaacs [1] which gives a connection between R^G and R.

Received July 9, 1975 and in revised form December 7, 1975

90 M. COHEN Israel J. Math.

LEMMA 1. Let G be a finite group of automorphisms acting on a $|G|$ -torsion *free ring R. Let* $S \neq 0$ *be a subring of R invariant under G. Then* $S \cap R^G \neq 0$ *or* S *is nilpotent.*

PROOF. This follows from [1, prop. 2.3].

In the following, *G will denote a finite group of automorphisms acting on a t G I-torsion free ring R.*

Proposition 1 in [2] is valid for R and G as above, the proof being identical to the proof in [2] where, instead of $J = \bigcap_{k \in G} \phi^k(I)$, we take $J = \bigcap_{k \in G} g(I)$.

Instead of proposition 2 in [2] we use the following generalization, which was proved in [3] but can also be shown to be a consequence of Proposition 1:

PROPOSITION 2. If R is semiprime and R^G is semisimple Artinian, then R is *semisimple Artinian.*

The next proposition gives the converse of the main theorem.

PROPOSITION 3. If R is semiprime and R is finite dimensional, then R^G is finite *dimensional and dim R* \geq dim *R*^{G}.

PROOF. Semiprimeness of R implies semiprimeness of R^c , by [9]; hence it is enough to show that if $x_1 R^G \oplus \cdots \oplus x_m R^G$ is direct in R^G then $x_1 R + \cdots + x_m R$ is direct in R, $x_i \in R^G$. If $0 \neq x_iR \cap (\sum_{i \neq i} x_iR)$, then, being invariant under G, we get by Lemma 1 and semiprimeness of R that $0 \neq x_iR \cap (\sum_{i \neq i} x_iR) \cap R^G$, but if $0 \neq x_i r_i = \sum_{i \neq j} x_i r_i \in R^G$, then

$$
0 \neq |G|x_ir_j = x_j \sum_{g \in G} g(r_j) = \sum_{i \neq j} x_i \left(\sum_{g \in G} g(r_i) \right) \in x_j R^G \cap \left(\sum_{i \neq j} x_i R^G \right) = 0,
$$

a contradiction. Thus Σx_iR is direct.

In the following proposition we deal with a ring R with singular ideal 0 and maximal quotient ring Q (in [2], Q is called a regular right quotient ring of R). We mention that for any $q \in Q$, $q^{-1}R = {r \in R | qr \in R}$ is essential and $q: q^{-1}R \rightarrow R$ is a right R-module homomorphism.

We show next that if G is a group of automorphisms acting on R , then G can be extended to a group of automorphisms \hat{G} acting on Q such that the restriction of \hat{G} to R is G. Categorically, we show that Aut R is a section of Aut Q.

PROPOSITION 4. *Let R be a ring with singular ideal 0 and maximal quotient ring Q. Then the following hold:*

1) If H_1 , $H_2 \in$ Aut *Q* and if $H_1(r) = H_2(r)$ for all r in R, then $H_1 = H_2$.

2) *Define* μ *on* Aut *R* via: $\mu(h)(q) = hqh^{-1}$ for $h \in Aut R$ and $q \in Q$. Denote by $(Aut O)_R$ the group of automorphisms on O which leave R invariant. Then, the *restriction of* μ (*h*) to *R* is *h*, so, μ : Aut *R* \rightarrow (Aut *Q*)_{*R*}. In addition μ is a bijective *group homomorphism. Hence* Aut $R \cong (Aut O)_R$.

3) If G is a subgroup of Aut R, then $\hat{G} = \mu(G)$ is a subgroup of $(Aut O)_R$, and *the restriction of* \hat{G} *to R is G. Hence, in particular,* $R^{\hat{G}} = R^G$ *.*

PROOF. To prove 1), it is enough to show that if $H(r) = r$ for all $r \in R$, then $H(q) = q$ for all $q \in Q$. Let $q \in Q$. Then $(H(q) - q)(q^{-1}R) = 0$, since $H(r) = r$ for all $r \in R$. Thus it follows easily that $H(q) - q = 0$.

Next let us prove 2). First we show that $\mu(h)(q) \in Q$, that is, we show that the domain of the function $\mu(h)(q)$ is an essential right ideal and that $\mu(h)(q)$ is a right R-module homomorphism. The domain of $\mu(h)(q) = hqh^{-1}$ is $h(q^{-1}R)$, which is essential since $q^{-1}R$ is essential and h is an automorphism. To show that *hqh*⁻¹ is a right R-module homomorphism, let $x = h(y) \in h(q^{-1}R)$ and $r \in R$. Then

$$
hqh^{-1}(xr) = hq[h^{-1}(h(y))h^{-1}(r)] = hq[yh^{-1}(r)].
$$

Since $y \in q^{-1}R$ and q is a right R-module homomorphism, we have

$$
hqh^{-1}(xr) = h(q(y)h^{-1}(r)) = (hqh^{-1})(x)r.
$$

We have seen so far that $\mu(h): Q \to Q$. The proof that $\mu(h) \in$ Aut Q and that μ is a group homomorphism is straightforward. Next we show that $\mu(h)(r)$ = *h(r),* thus $\mu(h) \in (Aut Q)_R$. Let $r \in R$. Then $R \subset Q$ via $r \to L$, (i.e., left multiplication by r); hence $\mu(h)(r) = \mu(h)(L_r) = hL_r h^{-1}$. But $(hL_r h^{-1})(x) =$ $h(rh^{-1}(x)) = L_{h(r)}(x)$ for each $x \in R$. Hence $hL_r h^{-1} = L_{h(r)}$, and we have shown that $\mu(h)(r) = h(r)$.

To see that μ is injective, assume $\mu(h) = id_0$; then $\mu(h)(r) = r$ for all $r \in R$. But by the above $\mu(h)(r) = h(r)$, so $h(r) = r$ for all $r \in R$, that is, $h = id_R$. Finally, μ is onto (Aut Q)_R, since if $H \in (Aut Q)_R$ and if h is the restriction of H to R, then $\mu(h)$ (r) = $H(r)$ for all $r \in R$; hence by 1), $\mu(h) = H$.

The proof of 3) follows from 2).

We are ready to prove the main theorem, part of which was shown independently by V. K. Harchenko [5].

THEOREM 1. *Let G be a finite group of automorphisms acting on a semiprime* $|G|$ -torsion free ring R. Then R^G is Goldie if and only if R is Goldie, and then $Q(R)^{G} = Q(R^{G})$ and dim $R \geq$ dim R^{G} .

PROOF. If R is semiprime Goldie, then by Proposition 3 R^G is finite dimensional and dim $R \geq$ dim R^c . Since R^c is a subring of R, it inherits the maximum condition on right annihilators; hence R^o is Goldie.

Now assume R^G is Goldie. Since R is a semiprime | G |-torsion free ring, we have by [8, cor. 5] that R^G is semiprime; thus R^G is semiprime Goldie.

If we now repeat the proof of theorem 1 in [2], and denote by T the set of nonzero divisors of R^G , then all that remains to be shown in order to prove that T is a right denominator set for R is that, for any $t \in T$, t is a left nonzero divisor in Q . To do this, let us extend G to Q as suggested in Proposition 4. Since $|\hat{G}| = |G|$, and since for each $q \in Q$, $qR \cap R \neq 0$, it follows that Q is $|\hat{G}|$ torsion free, and, since R is semiprime, that O is semiprime.

Now let $t \in T$, and assume that $l(t) = {q \in O | at = 0} \neq 0$. Since $l(t)$ is invariant under \hat{G} , an application of Lemma 1 to \hat{G} and Q gives $l(t) \cap Q^{\hat{G}} \neq 0$.

We shall prove next that for any $q \in Q^c$, we have $qR^c \cap R^c \neq 0$. Since $qR \cap R \neq 0$ is invariant under \hat{G} , Lemma 1 yields $(qR \cap R) \cap Q^c \neq 0$. But since $qR \cap R \subset R$ and $R^c = R^c$, we actually have $(qR \cap R) \cap R^c \neq 0$. Hence there are x and y in R such that $0 \neq ax = y \in R^G$, so

$$
0 \neq |G|y = \sum_{h \in G} h(y) = \sum_{h \in G} \hat{h}(y) = \sum \hat{h}(qx) = q \sum \hat{h}(x) = q \sum h(x) \in qR^G \cap R^G.
$$

In conclusion, there exists an element q such that $qt = 0$. On the other hand, there are $x, y \in R^G$ such that $0 \neq qx = y \in R^G$. Since R^G is semiprime Goldie and t is a nonzero divisor of R^G , there exist $t_1, x_1 \in R^G$, $t_1 \in T$ such that $tx_1 = xt_1$. But then $0 = qtx_1 = qxt_1 = yt_1 \neq 0$, since $y \in R^G$ and t_1 is a nonzero divisor of R^G . We have reached a contradiction, and thus $l(t) = 0$.

As in [2], we have shown that $Q = R_T$. Since $(R_T)^G = (R^G)_T$, and since $(R^G)_T$ is semisimple Artinian, Proposition 2 implies that R_T is Artinian. Since R is now an order in R_T , R is Goldie. Since $R_T = Q(R)$, the full ring of quotients of R, we derive from the above that $(O(R))^{G} = O(R^{G})$.

ACKNOWLEDGMENT

I wish to thank A. Braun for his fruitful suggestions and results.

REFERENCES

1. G. M. Bergman and I. M. Isaacs, *Rings with fixed point free group actions,* Proc. London Math. Soc., 3rd series, 27 (1973), 69-87.

2. M. Cohen, *Semiprime Goldie centralizers,* Israel J. Math. 20 (1975), 37-45.

3. M. Cohen and S. Montgomery, *Semisimple Artinian rings of fixed points,* Canad. Math. Bull. 18 (1975), 189-190.

4. C. Faith, *Galois subrings of Ore domains are Ore domains*, Bull. Amer. Math. Soc. 78 (1972) 1077-1080.

5. V. K. Harchenko, *Galois extensions and rings of fractions*, 2nd All-Union Symposium in Ring Algebra and Modules Theory, Kishinyov, 1974.

6. I. N. Herstein and L. Neumann, *Centralizers in rings,* Annali di Mathematica servie Ouarta Tomo CIF (1975), 37-44.

7. R. E. Johnson, The *extended centralizer o1: a ring over a module,* Proc. Amer. Math Soc. 2 (1951), 891-895.

8. J. Lambek, *Lectures on Rings and Modules,* Blaisdell, Waltham, Mass., *1966.*

9. S. Montgomery, The Jacobson radical and fixed rings of automorphisms (to appear in Comm. Algebra).

10. L. Small, *Orders in Artinian rings,* J. Algebra 4 (1966), 13--41.

DEPARTMENT OF MATHEMATICAL SCIENCES

TEL AVlV UNIVERSITY

TEL AvIv, ISRAEL